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ABSTRACT

The problem of finding a point with largest norm in a bounded polyhedral

set is shown to have a considerable range of complexity depending on the norm S S

employed. For a p-norm with integer p k 1, the problem is shown to be NP-

complete. For the 0-norm, the problem can be solved in polynomial time.

The problem of finding an upper bound to the largest norm for any p e [1,-] .

can be solved in polynomial time by solving a single linear program.
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SIGNIFICANCE AND EXPLANATION

The solution set to many important constrained optimization problems is a

set that is bounded by planes. When such a set is bounded it is useful to

find the size of a largest element in that set. In this work we show that

this problem may be extremely easy or difficult depending on the measure of

size (norm) employed. For one such measure the problem is relatively easy

while for all other measures it is intractable. However the problem of merely

finding an upper bound for the size of the largest element turns out to be a "

surprisingly simple problem that can be solved by a single linear program.
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A VARIABLE-COMPLEXITY NORM MAXIMIZATION PROBLEM

0. L. Mangasarian and T.-H. Shiau

1. Introduction

The problem of obtaining bounds for polyhedral sets has received considerable

attention in mathematical programming (14, 15, 16, 12, 8, 91. Part of the significance of

this problem stems from the fact that the solution set to a linear program (4, 10] and to a 0

monotone linear complementarity problem (2] is such a polyhedral set. Bounding the

solution set to such problems when possible is then of practical interest. In this work we

shall consider the polyhedral set X in Rn defined by

(1.1) x:- {x I x e Rn , Ax > b)

where A is a given m x n real matrix and b is a given m x 1 real vector. We assume

throughout this work that X is bounded. It is easy to show that a necessary and

sufficient condition for X to be bounded is that
S

(1.2) y l y y e Rn, Ay 0, y 0}

The problem we wish to consider here is

(1.3) max x-
xex p

n li/p=----

where 1.1 denotes the p-norm on Re 1 S p <a defined by ,x p 1 xIp) and •
pi-

1I.- m -.n
1<i<n - . ..

We will show that while (1.3) can be solved in polynomial time for p - ", it is NP-

complete (6, 11] for integer p a 1. Since it is widely believed that no NP-complete = S

problem can be solved in polynomial time (the famous conjecture P ' NP in computational

complexity theory), the difference in the difficulty between p = a and all other integer

p 4 I is enormous. (The standard complexity theory terms used here are defined in Section

4.) In fact we can summarize the complexity situation for our problem (1.3) as shown in

Table 1.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is -
based upon work supported by the National Science Foundation under Grant Nos. MCS-8200632
and DMS-8210950, Mod. 1.
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Problem Complexity Method of Solution

1. Find an upper bound P Single linear program
to max lxi for (Deterministic

xeX P polynomial time)

any p e [1,-i

2. max lxI P 2n linear programs
xeX

3. max x 1 NP-complete 2n linear programs
xeX (Nondeterministic

polynomial time)

4. max x NP-complete Vertex enumeration
xeX p
Integer p _22

Table 1. Complexity of max lxi and its method

of solution. xeX p 6

We note in passing that the minimization problem min Nx is by contrast a much
xex

simpler convex programming problem for p e [1,-
i
]. In fact for p = 1 and it can be

solved by standard linear programming techniques [4, 10] or by a polynomial time algorithm -

e.g. [7]. For p = 2 the problem is a convex quadratic program which can be solved by

standard techniques e.g. [2] or by a polynomial time algorithm [3].

In the following sections of this paper we will show how each of the problem of Table

1 is solved and its complexity. Section 2 deals with finding an upper bound to (1.3) for S

p e [1,-]. Section 3 deals with problem (1.3) for p I and 0 while Section 4 deals

with the cases of integer p 1 1.

2. Bounding max Ix 
xeX P

It is somewhat surprising that for any p e [1,-], an upper bound to the solution of

the nonconvex problem max 1xi can be obtained by solving a single linear program
xex P 

•

(Theorem 2.1 below). This is especially so since we show (Section 4) that the problems
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max Ixi for integer p I 1 are intractable NP-complete problems. When X is containedxeX P

In the nonnegative orthant x e R, x > 0 it is evident that a solu'-ion to the

1-norm problem max 1  is easily obtained by the single linear progrm
xeX

(2.1) max nx
xeXnR n

where e is a vector of ones. However when X 91 Rn , as may be the case here, solution of

max xli will take 2n linear programs, as shown in Section 3. In fact we will show in
xeX
Section 4 that the problem max I 1  is NP-complete. However, merely obtaining an upper

xeX S
bound to max %x1 for any p e [1,m] will take at most a single linear program as shown

xeX P

by the following result.

2.1 Theorem. Let X be nonempty and bounded, let

(2.2) B := (ATA)-lAT , d:- Bb

and let B. denote the jth column of B. Then for any p e [1,-] and any x e x

(2.3) Nx < max (Ida , IyB. + di -
P 1<j!m p

where y is the maximum value of the following solvable linear program

n m(2.4) Y :~max(ey x e R ,y e R', Ax -y b, y )01
x'y

Proof. Note first that the boundedness condition (1.2) implies the linear independence of

the columns of A and hence the nonsingularity of ATA. In addition the nonemptiness and

boundedness of X implies the solvability of the linear program (2.3). Hence

max 1xi = max{Ixi x e Rn
, y e R , Ax - y = b, y 01

xeX P x P

= max{Ixl f x = By + d, (AB-I)(y+b) = 0, y 0 0, ey Y )} -
x,y

< max{IxlI x = By + d, y > 0, ey < y}
= px,y

- max(IBy + dl y 1 0, ey "y

y

max (Idl, Oyu. + dl
1 < j < m 

" "

-3-
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where the last equality follows from the fact that the maximum of a convex function on a

bounded polyhedral set is attained at a vertex [13, Corollary 32.3.4]. '

Note that if a lower bound to max Ixi is also desired, then we have the following. "
xeX

2.2 Corollary. Under the assumptions of Theorem 2.1 we have that

IBy + di < max IxIp xeX P

where y is a solution of the linear program (2.4).

Since by Khachian's result (7] a linear program is solvable in polynomial time in the

size of the problem, and since the algebraic operations prescribed in (2.3) can all be

performed in polynomial time, the following holds.

2.3 Corollary. The bound (2.3) can be computed in time which is polynomial in the size

of A and b. O

We note that the bound (2.3) of Theorem 2.1 may be sharp as evidenced by the following

example.

2.4. Example A (-2 ) b = )-10

1 4 2

For this example it is easy to verify that

max Ixi = 10 for p = 1, 2 and , y = 42
xex P

B (-.0649 .1688 .0260 , d = (-1.0909

.0519 .0649 .7273

Computing the bound (2.3) of Theorem 2.1 gives for p = 1, 2 and =_

max {ldl, IyB . + dip} = 10 '
I<j<3 p

-4- -,
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3. max lA for p and 1
xex P

It is rather obvious that the problem max iI0 can be solved by maximizing the
xeX

absolute value of each component of x separately subject to x being X. This leads to

the following.

3.1 Proposition

The problem max Ix. can be solved by solving the 2n linear programs
xeX

(3.1) max max(+xi I x e Rn, Ax >b 
1<i<n

Since each linear program can be solved in polynomial time [7] we have the following.

3.2 Corollary

The problem max lxl_ can be solved in time which is polynomial in the size of A
xeX

and b. -
n S

Since the problem max 1x1 is equivalent to max I lxil, its solution can be
xeX i-1

obtained by solving 2n linear programs as follows. xex

3.3 Proposition

The problem max NxI can be solved by solving the 2n  linear programs
xeX

(3.2) max max(vx, x e sn, Ax > b'
veV x

where V is the set of 2n  vertices of the cube in Rn defined by

(3.3) {v v e Rn, -e < v <) •

While 2n linear programs can be solved in a reasonable amount of time for inter-

mediate-sized problems, solving 2n linear programs is intractable even for n as small

as 15. It is even worse for general p e (1,-) if we try to enumerate the vertices of

X for finding the maximal p-norm, for the number of vertices can be much larger than 2n .

One may try to find other algorithms that are computationally effective. Unfortunately, as

shown in the next section, problem (1.3) with p # - is no easier than the partition

problem (see (4.1) below) which is inherently intractable.

-5-



4. The intractability of the norm maximization problem for p

We begin this section with some basic concepts of complexity theory (6, 11]. Problem *

A reduces (in polynomial time' to problem B, denoted by A I B, iff the following holds:

If there is a polynomial time algorithm for B, then one can construct a polynomial time

algorithm for A using the algorithm for B as a subroutine. Problems A and B are poly-

nomially equivalent iff A -B and B - A. An NP-complete problems is one which is poly-

nomially equivalent to any one of the standard intractable problems such as the

satisfiability, partition, or travelling salesman problems [6, 11]. These problems are

considered intractable because any algorithm which solves any one of them requires, in the

worst case, an amount of time which is exponential in the problem size. An NP-hard problem

is any problem such that some NP-complete problem reduces to it in polynomial time. Thus

an NP-hard problem is at least as difficult as an NP-complete problem. We will now shown

that our norm maximization problem (1.3) is NP-hard for p I - by reducing the following

NP-complete partition problem to it:

(4.1) Given integers cl,c 2 ,...,cn, is then a set S c {1,2,...,n)

such that . c. = c -
jes js _

4.1 Theorem. The norm maximization problem (1.3) is NP-hard for p e [1,-).

Proof. We will show this by reducing (4.1) to (1.3). Let p e [1,-). We first reduce

(4.1) to the following problem:

(4.2) Given integers cl,c 2 ,...,cn, is there an x e Rn  such that:

n

cixi = 0, -1 _ x i  1, 1 i g n, Ixi p > n ?
i=-p

It is easy to see that (4.1) has a solution S iff (4.2) has a solution x with 1xil i

for I & i S n and xi = 1 for i e S and xi = -1 for i g S. Now it is easy to see

that (4.2) can be reduced to an instance of problem (1.3) by defining

......... . ........ . . . .

. . ..-.. . . . . . . . . . . . . . . . . . . .

.. . . . . . . .. . . . . . . . .. . . . f i..
...........................................
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FI~ -e

A := T b := C 0
_ T 0° ' .

and answering the question:

(4.3) Is max(lx ] x e Rn, Ax > b} > n
1
/p ? 0

p _ =

Hence if we can solve (1.3) in polynomial time we can solve each of (4.3), (4.2) and (4.1)

in polynomial time. Hence (4.1) a (1.3) and (1.3) is NP-hard.

0

We go on to show now that our norm maximization problem (1.a) is in fact NP-complete 0

for integer p $ . In order to do this we introduce additional concepts from complexity

theory. A nondeterministic algorithm is an algorithm which at each step has a finite

number of moves from which to choose (instead of only one for deterministic algorithms) and

it solves a problem in a finite sequence of choices 
leading to a correct answer. NP is the

class of problems solvable by a nondeterministic algorithm in polynomial time, including

(4.1) and all other NP-complete problems. In fact NP-complete problems are the class of

most difficult problems in NP in the sense that each problem in NP reduces in

polynomial time to each NP-complete problem. By Cook's theorem [1, 6, 11], all we need to

show for (1.3) to he NP-complete is that it is NP-hard (which we already have done in

Theorem 4.1) and that it is in the class NP, which we proceed to do now. In order to do

that we introduce the following decision problem related to our optimization problem (1.3):

(4.4) Given A, b with integer entries satisfying (1.2), and nonzero integers r, a, p,

is there a vector x in Rn such that

Ax 2 b, Ixl
P 

> ?
p=s

Note that in the proof of Theorem 4.1 we have already established that the decision problem

(4.4) in NP-hard, because we reduced the partition problem (4.1) to (4.2) which is an

instance of (4.4). We will now first show that (4.4) is in NP and hence it is NP-complete.

Then we will show that an optimization problem (1.3) is polynomially equivalent to the NP-

complete decision problem (4.4). Note that condition (1.2) which is imposed on problem

-7-
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.4) which is a necessary and sufficient condition for the boundedness of X, plays an

sential role in Proposition (4.2) below which establishes that (4.4) is In NP. * 5

2 Proposition. Problem (4.4) is in NP for integer p > 1.

:of. It follows by the convexity of the norm and the boundedness of X by (1.2) [13),

at IxI
p 

> for some x e X iff tvI
p 

> - for some vertex v of X. Moreover, v
p=s p=s

a vertex iff there is a J c (1,2,...,m}, IJJ = n such that v is the unique solution

Aix = bi, i e J, and Ajx k bj for j J. Consequently we can prescribe the

llowing nondeterministic algorithm for solving (4.4).

3 Algorithm

(i) choose J, a subset of 11,2,...,m) with cardinality n.

(ii) Solve Aix = bi, i e J for one x, or conclude that the system is .

inconsistent.

(iii) if solution x found and Ajx I bj for j 0 J and RIA
P 

> 
s  

then print x;
p = S

success; else failure; endif.

ep (ii) can be performed in polynomial time (e.g. by Gaussian elimination). Since we

Ve assumed that p is an integer, IxNP can be evaluated in O(log2 p) multiplications
p

d O(log2 n) additions. Hence Algorithm 4.3 is a polynomial time algorithm and (4.4) is

NP.

Now we show that the NP-complete decision problem (4.4) and our optimization problem

.3) are polynomially equivalent, thus establishing the NP-completeness of (1.3). First

is obvious that if one can solve the optimization problem (1.3), then one can answer the

:ision problem (4.4). The reverse is usually done by a binary search technique showing

at the optimization problem can be solved by a polynomial number of decision problems.

is is all rather obvious for discrete combinatorial problems, but not for our continuous

Dblem (1.3). To do this here, we shall use arguments similar to those of Khachian [71.

fine

-8- . .j
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L := > log2 (+Ai + 1) + ) log2 1bil + + + log2 (nm 1) + log2 (p-l)
i, -1 i

L is the total length of binary digits representing the input A, b, n, m, p of problem S

(1.3). 
"

4.4 Theorem. For any integer p 1 1, problem (1.3) is in NP and hence it is NP-complete.

Proof. Since an optimal solution of (1.3) is at a vertex of X [13], such a vertex can be

D D T

written by Cramer's rule as (- ..., -** , where D and Di  are determinants of

submatrices of [A b]. Hence

D, D T

(i) For any vertex v = (-- .... 3 , IDI < 2L, <D 
, 

< 2L, 1vlp< 2PL. (See (51P D

for details.)

D D T B B T

(ii) For any two distinct vertices Ivi $ VWtp, V = ...- . w = .
p

it follows that

IDlJP +"'+ ID
n l  iBlP '.'+ iBn.. I

-IvI - n n > 1- > 2. " _

P pIDI p  JBIP  " IDIPIBIp  "-

Hence we can reduce (1.3) to (4.4) by binary search on the interval [0 ,2pL] until the

range is less than 2
-
2pL

. 
Since each iteration reduces range by half, 3pL iterations

will do that if we have:

(i) 2. * 0, u + 2pL 
-

(ii) for i 1 to 3pL do

r 1
(iII) solve the decision problem (4.4) for input A, b, - = - (£+u)

(iv) if answer is yes then 2 r else u + r endif5 s 5

(v) end for 0

If (iii) can be done in polynomial time, then (i) to (v) can be done in polynomial time.

After Iv), we known that there exists an x e X such that 2 = u-2-2pL, iixiIP > X, whereasp = . .- .

there is no x e X such that fxl
p 

> u. Hnece if we now use Algorithm 4.3 with inputp = •
2. , A and b, the x printed in step (iii) of Algorithm 4.3 is an exact vertex

s

. . .- -- - - - - - -
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S

solution of (1.3) obtained in polynomial time. Hence (1.3) is in NP, and since by Theorem

4.1, (1.3) is NP-hard it follows that (1.3) is NP-complete. 0
0

0

S

S

-S

-S

S

-S
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